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Abstract—Medical imaging plays a pivotal role in modern
healthcare, enabling accurate diagnosis and effective treatment
planning across various medical conditions. Advanced modal-
ities, such as magnetic resonance imaging (MRI), computed
tomography (CT), and ultrasound, offer critical insights into
the structure and function of the human body. However, these
images are often degraded by noise introduced during acquisi-
tion or processing, potentially obscuring vital diagnostic details
and impacting clinical decision-making. Furthermore, enhance-
ment techniques like histogram equalization, while improving
visual appeal, may inadvertently amplify existing noise, such
as salt-and-pepper distortions. This study investigates wavelet
transform-based denoising methods to mitigate noise in med-
ical images effectively. Our primary goal is to identify the
optimal combination of threshold values, decomposition levels,
and wavelet types to achieve superior denoising performance,
ensuring enhanced diagnostic accuracy. Our study finds that
the db3 wavelet with universal thresholding achieved the best
denoising effect across various noise levels. For noise standard
deviations of σ = 10, 15, and 25, the best PSNR values obtained
are 29.203 dB, 27.791 dB, and 25.194 dB, respectively. These
results establish a foundation for developing hybrid wavelet-deep
learning approaches for medical image denoising.

Index Terms—Image Denoising, Magnetic Resonance Imaging
(MRI), Discrete Wavelet Transformation (DWT).

I. INTRODUCTION

Noise in medical images can arise from various sources, in-
cluding the imaging acquisition process itself, patient motion,
and external interference. For instance, magnetic resonance
imaging (MRI) images can be affected by thermal noise from
the patient’s body and electronic components, while computed
tomography (CT) scans may suffer from quantum noise due
to the limited number of X-ray photons detected. Ultrasound
images are particularly susceptible to speckle noise, an in-
herent artifact of the coherent nature of ultrasound waves.
These noise sources manifest as random fluctuations, blurring,
or other distortions in the resulting images, complicating the
interpretation and analysis tasks performed by radiologists and
medical professionals.

To address these challenges, various image denoising tech-
niques have been explored. Traditional approaches, such as
linear filtering, wavelet-based methods, and non-local means
denoising, have shown some success in reducing noise levels
while preserving image features. However, these methods
often struggle with complex noise patterns and may intro-
duce undesirable artifacts or over-smoothing. For instance,
Kollem et al. [1] proposed a diffusivity function-based PDE

approach incorporating Quaternion Wavelet Transform and a
generalized cross-validation function for threshold selection,
effectively reducing noise while preserving edges. Wavelet-
based methods have further evolved through innovations such
as Rational Wavelet Transform (RWT), which incorporates
wavelet properties into neural networks [2]. These Wavelet
Neural Networks (WNNs) integrate wavelets as preprocessing
steps or activation functions, enabling hybrid approaches for
image denoising. Another hybrid method combining Wavelet
Transform (WT) and Singular Value Decomposition (SVD)
has been shown to improve the signal-to-noise ratio (SNR)
and peak signal-to-noise ratio (PSNR), offering enhanced
denoising performance [3]. Similarly, Zhang et al. [4] in-
troduced a fractional-order total variation model leveraging
differential operators and sparrow search algorithms to balance
noise removal and texture preservation. Recent advances in
deep learning have revolutionized denoising methods, offering
sophisticated solutions to complex noise patterns. Autoen-
coders, for instance, have gained attention for their ability
to learn compact representations of noisy data. Walid et al.
[5] presented CADTra, a deep-learning-based autoencoder
approach utilizing a Gaussian-distribution based loss function
to improve noise removal and pneumonia classification. Com-
prehensive surveys like that of Izadi et al. [6] highlight the pro-
gression of deep denoisers, covering benchmark datasets, eval-
uation metrics, and both supervised and unsupervised methods.
Hybrid deep learning approaches, such as MWDCNN [7],
combine CNNs, Wavelet Transforms, and residual blocks to
achieve superior denoising performance in natural images,
with potential applications in medical imaging. Despite these
advances, challenges remain. Large training data requirements,
computational inefficiency, and the opaque nature of learned
representations continue to limit the applicability of deep
learning in denoising tasks [8].

The literature underscores the effectiveness of wavelet trans-
forms and deep learning techniques, especially convolutional
neural networks (CNNs), autoencoders, and generative adver-
sarial networks (GANs), in the denoising of medical images.
These methods effectively minimize noise while preserving
essential details, thereby enhancing diagnostic accuracy and
improving clinical outcomes. This research builds on these
foundational concepts by exploring wavelet transform tech-
niques specifically for denoising MRI brain images to enhance
image quality and broaden diagnostic capabilities. The key
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contributions of this research include:
• Identifying the optimal configurations for MRI image

denoising, with the sym4, db3, and bior6.8 wavelets
demonstrating the best performance across various noise
levels.

• Conducting a thorough evaluation using Peak Signal-to-
Noise Ratio (PSNR), Mean Squared Error (MSE), and
Structural Similarity Index (SSIM) to compare different
denoising methods and their effectiveness at various noise
levels.

• Laying the groundwork for combining wavelet-based
denoising with deep learning techniques to create more
robust solutions.

In the following sections, we discuss our approach in detail.
Section II describes the used methodology. Section III presents
an in-depth analysis of the dataset, parameters, and results.
Finally, Section IV highlights conclusions and future research
directions.

II. METHODOLOGY

Wavelet decomposition techniques have proven to be ef-
fective tools for denoising MRI images due to their multi-
resolution capabilities. These techniques allow for the separa-
tion of the signal (image) from noise by decomposing the im-
age into various frequency components, applying thresholding
to reduce noise, and then reconstructing the denoised image. In
this study, the wavelet decomposition method is implemented
for MRI image denoising. The detailed system workflow is
depicted in Figure 1.

Fig. 1. A detailed system flowchart

A. Why Wavelet Transform for Image Denoising?

Wavelet transformation offers several key advantages that
make it particularly well-suited for medical image denoising:

1) Multi-resolution Analysis: Unlike traditional filtering
methods, wavelets provide simultaneous analysis at dif-
ferent resolution levels, allowing the preservation of
important image features while effectively removing
noise.

2) Localization Properties: Wavelets excel in both fre-
quency and spatial localization, enabling more precise
identification and removal of noise components while
maintaining image integrity. This dual localization is
especially valuable in MRI images where noise patterns
can vary across different image regions.

3) Sparse Representation: Medical images have sparse
wavelet domain representations, making noise-signal
separation more effective than Fourier-based methods.

4) Deterministic Approach: Unlike deep learning meth-
ods requiring extensive training data and computation,
wavelet-based denoising:

• Computationally efficient with no training overhead
• Independent of dataset availability or quality
• Immediately applicable to new medical imaging

scenarios
• More interpretable due to its mathematical founda-

tion
• Consistent in performance across different imple-

mentations
5) Edge Preservation: Wavelets are particularly effective

at preserving edge information while removing noise,
which is crucial in medical imaging where boundary
information often carries diagnostic significance.

B. Data Collection and Preprocessing

The MRI image dataset used in this study was sourced
from figshare [9]. This dataset consists of 3,064 brain tumor
MRI images, providing a diverse collection of medical images
for experimentation. For the purposes of this study, a single
sample was selected and prepared as follows:

1) Image Retrieval: The selected images were retrieved and
loaded into the experimental setup.

2) Normalization: Pixel intensities were normalized to fall
within the range of 0–255 to ensure consistency during
processing.

3) Noise Addition: Since MRI images are often affected
by Gaussian noise, Gaussian noise was artificially intro-
duced with mean (µ) = 0 and standard deviations (σ) of
10, 15, and 25 to simulate real-world noise scenarios.

C. Wavelet-based Denoising

Wavelet decomposition techniques leverage the multi-
resolution nature of wavelets to effectively denoise MRI
images. By decomposing an image into different frequency
components, separating the signal from noise becomes more
manageable. The key steps in this process are:



1) Wavelet Transform: The MRI image is decomposed into
various scales using a wavelet transform. This results in
approximation coefficients (low-frequency information)
and detail coefficients (high-frequency information).

2) Optimal Threshold Determination: A method is devised
to determine the optimal threshold for denoising, utiliz-
ing techniques such as the Universal and Bayes methods.

3) Thresholding: The detail coefficients, which often carry
noise, are processed using thresholding methods. Two
commonly used approaches are hard thresholding and
soft thresholding.

4) Reconstruction: The inverse wavelet transform is applied
to the modified coefficients to reconstruct the denoised
image.

D. Wavelet Types

Wavelets come in various types, such as orthogonal,
biorthogonal, and symmetric wavelets. For this study, three
wavelets: db3, bior6.8, and sym4 were considered. While
orthogonal and biorthogonal wavelets are commonly used
for audio signal denoising, their properties also make them
suitable for image signal processing.

• Daubechies Wavelet (db3): The db3 wavelet belongs to
the Daubechies family, characterized by compact support
and orthogonality. With three vanishing moments, it is
well-suited for capturing polynomial behavior in the data.
It effectively preserves smooth regions and edges in
images, balancing detail preservation and noise reduction.

• Biorthogonal Wavelet (bior6.8): The bior6.8 wavelet of-
fers separate scaling and wavelet functions, with 6 van-
ishing moments for the scaling function and 8 for the
wavelet function. This biorthogonal wavelet is particu-
larly useful in image processing due to its symmetry
and superior reconstruction properties, maintaining sharp
edges while reducing noise.

• Symlet Wavelet (sym4): The sym4 wavelet, a modifica-
tion of the Daubechies wavelet, is more symmetric and
features four vanishing moments. This symmetry makes
it advantageous in image processing tasks, providing a
balance between noise reduction and edge retention.

E. Optimal Threshold Value Calculation

Calculating the optimal threshold is critical for effectively
distinguishing between signal and noise in wavelet-based
denoising. Two popular methods for determining this threshold
are as follows:

1) Bayes Method: This approach minimizes the mean
squared error (MSE) between the estimated and true
images by leveraging the statistical properties of the
noise [10]. The optimal threshold value for this method
is given by:

τbayes =

{
σ2

noise
σsignal

if σsignal > 0

max(|cj |) otherwise
(1)

Where:

• τbayes is the Bayes threshold value,
• c represents the wavelet coefficients,
• σsignal =

√
max(Var(c)− σ2

noise, 0) estimates the
signal standard deviation from the wavelet coeffi-
cients c,

• σnoise is the noise standard deviation.
2) Universal Method: The Universal method provides a

global threshold, simplifying the denoising process [11].
The threshold is defined as:

τuniversal = σnoise
√
2 log(N) (2)

Where:
• τuniversal is the Universal threshold value,
• σnoise is the noise standard deviation,
• N is the number of wavelet coefficients.

F. Thresholding Techniques

Thresholding is a critical step in wavelet-based denoising,
where the goal is to modify wavelet coefficients to suppress
noise while retaining significant signal components. This pro-
cess involves either shrinking or removing coefficients based
on a predefined threshold value.

1) Hard Thresholding: In hard thresholding, coefficients
below a specified threshold (τ ) are set to zero, while
those above the threshold remain unchanged [12]. This
method is defined as:

ĉj =

{
cj if |cj | > τ

0 otherwise
(3)

While hard thresholding can effectively eliminate noise,
it may introduce artifacts and cause loss of detail in the
reconstructed signal.

2) Soft Thresholding: In soft thresholding, coefficients are
both shrunk and thresholded [12]. Coefficients smaller
than the threshold are set to zero, while those exceeding
the threshold are reduced in magnitude by τ . This
method is expressed as:

ĉj =

{
0 for |cj | ≤ τ

cj − τ for cj > τ
(4)

Soft thresholding introduces smoother transitions com-
pared to hard thresholding, which helps preserve signal
continuity. However, it may result in a slight blurring
effect in images.

From the above,
• cj is the wavelet coefficient,
• τ is the optimal threshold value calculated from Bayes

or Universal method,
• ĉj is the modified wavelet coefficient after thresholding.

G. Performance Metrics in Image Denoising

Performance metrics are crucial for evaluating the quality
of processed images. In the context of image denoising, three
commonly used metrics are Mean Squared Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index



(SSIM). Each metric provides unique insights into the quality
of denoised images in comparison to the original images.
Together, these metrics facilitate a comprehensive evaluation
of denoising algorithms.

While MSE offers a straightforward measure of error, PSNR
gives a logarithmic perspective on the signal quality, and SSIM
incorporates human visual perception into its evaluation.

Mean Squared Error (MSE) quantifies the average
squared difference between the original and the denoised
image [13]. It is calculated using the formula:

MSE =
1

MN

M∑
i=1

N∑
j=1

[I(i, j)−K(i, j)]2 (5)

where:

• I(i, j) is the pixel value of the original image,
• K(i, j) is the pixel value of the denoised image,
• M and N are the dimensions (height and width) of the

images.

A lower MSE value indicates better denoising performance,
as it represents a smaller error between the original and the
denoised image.

Peak Signal-to-Noise Ratio (PSNR) measures the maxi-
mum signal power in an image relative to the noise that distorts
it [13]. It is expressed in decibels (dB) and is calculated as:

PSNR = 10 log10

(
R2

MSE

)
(6)

where:

• R is the maximum possible pixel value of the image
(here, 255 for an 8-bit image).

Higher PSNR values indicate better image quality, as they
signify less distortion in the denoised image compared to the
original.

Structural Similarity Index (SSIM) evaluates perceived
changes in structural information, luminance, and contrast
between two images [14]. It is defined as:

SSIM(x, y) =
(2µxµy + a)(2σxy + b)

(µ2
x + µ2

y + a)(σ2
x + σ2

y + b)
(7)

where:

• µx and µy are the average pixel values of images x and
y,

• σ2
x and σ2

y are their variances,
• σxy is the covariance between x and y,
• a and b are small constants to stabilize division.

SSIM values range from -1 to 1, where a value of 1
indicates perfect structural similarity. Unlike MSE and PSNR,
SSIM provides a more perceptually relevant assessment of
image quality, as it incorporates human visual perception in
its calculations.

III. DATASET AND RESULT ANALYSIS

A. Experimental Data

The brain tumor MRI dataset from figshare [9] was chosen
for this study, consisting of 3,064 MRI images. Six separate
tests were carried out on a single image from this dataset.

B. Experimental Configuration & Evaluation

Table I demonstrates the addition of Gaussian noise and
provides metrics that highlight the differences between the
original sample and the noisy image sample in each exper-
iment. The denoising experiment aims to reduce the mean
squared error while increasing both the structural similarity
index and the peak signal-to-noise ratio. Additionally, Table I
shows the optimal combinations identified in each experiment
for effective denoising the noisy images.

Gaussian noise with µ = 0 and varying σ was added to a
sample image, which was decomposed up to level 5 using the
db3, bior6.8, and sym4 wavelets. The optimal thresholds were
determined using the Bayes and Universal methods, and both
hard and soft thresholding were applied. The findings for each
experiment are summarized below:

1) Experiment 1 (σ = 10, Bayes method): The best result
was achieved at level 2 with the sym4 wavelet, produc-
ing identical outcomes for hard and soft thresholding.
Results are shown in Figure 2.

2) Experiment 2 (σ = 10, Universal method): The optimal
configuration was at level 4 with the db3 wavelet and
soft thresholding. Results are shown in Figure 3.

3) Experiment 3 (σ = 15, Bayes method): Level 2 with
the sym4 wavelet yielded the best results, with identical
outcomes for hard and soft thresholding. Results are
shown in Figure 4.

4) Experiment 4 (σ = 15, Universal method): The best
performance was at level 3 using the db3 wavelet and
hard thresholding. Results are shown in Figure 5.

5) Experiment 5 (σ = 25, Bayes method): Level 2 with the
sym4 wavelet produced the best results, with identical
outcomes for both thresholding methods. Results are
shown in Figure 6.

6) Experiment 6 (σ = 25, Universal method): The optimal
configuration was at level 4 with the db3 wavelet and
soft thresholding. Results are shown in Figure 7.

Fig. 2. Experiment 1 – (a) Original Image, (b) Noisy Image(µ = 0, σ = 10),
(c) Denoised Image (with threshold value τbayes)



TABLE I
NOISE SETTINGS AND THE OPTIMAL DENOISING CONFIGURATION FOUND IN EXPERIMENTS

Exp.
no

Noise Setup Optimal Denoising Configuration with Observed Metrics
Noise standard
deviation (σ)

Noise Metrics Decomposition
level Wavelet Thresholding

value
Thresholding

method
Denoising Metrics

MSE SSIM PSNR MSE SSIM PSNR
1 10 761.108 0.5 19.316 2 sym4 τbayes hard, soft 105.297 0.782 27.907
2 10 725.131 0.493 19.527 4 db3 τuniversal soft 78.128 0.784 29.203
3 15 1148.059 0.385 17.531 2 sym4 τbayes hard, soft 198.016 0.711 25.164
4 15 1492.804 0.373 16.391 3 db3 τuniversal hard 108.145 0.74 27.791
5 25 2513.741 0.252 14.128 2 sym4 τbayes hard, soft 487.683 0.597 21.249
6 25 2901.145 0.259 13.505 4 db3 τuniversal soft 196.635 0.656 25.194

Fig. 3. Experiment 2 – (a) Original Image, (b) Noisy Image(µ = 0, σ = 10),
(c) Denoised Image (with threshold value τuniversal)

Fig. 4. Experiment 3 – (a) Original Image, (b) Noisy Image(µ = 0, σ = 15),
(c) Denoised Image (with threshold value τbayes)

Fig. 5. Experiment 4 – (a) Original Image, (b) Noisy Image(µ = 0, σ = 15),
(c) Denoised Image (with threshold value τuniversal)

C. Result Discussion

Figures 8, 9, and 10 illustrate the results of noise mitigation
when comparing the original images to the noisy and denoised
versions. The configurations observed in denoising, as indi-
cated in Table I, suggest that when the optimal threshold value
is determined using the Bayes method, the sym4 wavelet pro-
vides the best performance. Conversely, the Universal method

Fig. 6. Experiment 5 – (a) Original Image, (b) Noisy Image(µ = 0, σ = 25),
(c) Denoised Image (with threshold value τbayes)

Fig. 7. Experiment 6 – (a) Original Image, (b) Noisy Image(µ = 0, σ = 25),
(c) Denoised Image (with threshold value τuniversal)

performs more effectively with the db3 wavelet. Among
the various thresholding techniques, the combination of the
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Fig. 8. Comparison of MSE before and after denoising across experiments



Universal threshold and the db3 wavelet achieves the highest
PSNR values. Specifically, for noise standard deviations of
σ = 10, 15, 25, the best PSNR values obtained using the db3
wavelet with the Universal method are 29.203 dB, 27.791 dB,
and 25.194 dB, respectively.
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Fig. 9. Comparison of PSNR before and after denoising across experiments

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

0.5 0.49

0.39 0.37

0.25 0.26

0.78 0.78

0.71
0.74

0.6
0.66

Experiment Number

SS
IM

Original vs Noisy
Original vs Denoised

Fig. 10. Comparison of SSIM before and after denoising across experiments

IV. CONCLUSION

This research developed an effective medical image de-
noising pipeline using wavelet transformation techniques. Our
experimental results on brain MRI images demonstrated that
the db3 wavelet with Universal thresholding achieved optimal
denoising performance, with PSNR values of 29.203 dB,
27.791 dB, and 25.194 dB for noise standard deviations of
σ = 10, 15, and 25 respectively. The sym4 wavelet with
Bayes thresholding also showed consistent performance with
significant SSIM improvements. Lower decomposition levels
(2-4) provided better denoising results across all noise levels.

The Universal method with db3 wavelet achieved the highest
PSNR values while maintaining structural similarity even
at high noise levels (SSIM: 0.656 at σ=25). These results
demonstrate the effectiveness of our approach in preserving
diagnostic features while reducing noise artifacts. Future work
will focus on integrating these wavelet-based techniques with
deep learning methods to develop more robust solutions for
medical image denoising.
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