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Introduction

Biomedical Images:
• MRI
• CT Scan
• X-ray, etc

Noise in Images:
• Thermal noise from the patient’s body
• Electronic Components
• Interference from outside environment
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Introduction (Cont.)

Effects of Noise:
• May lead to incorrect Region of Interst (ROI)
• Trouble to human eyes, difficult for doctors and radiologists for proper

diagnosis
• Difficulty in machine learning

Problem Statement:
Medical images are often corrupted by noise during acquisition and
processing. Traditional denoising methods struggle with complex noise
patterns, leading to loss of important details. This study aims to optimize
wavelet-based denoising to enhance image clarity.
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Research Objectives

• Identify the optimal wavelet and thresholding method for MRI denoising.
• Evaluate denoising performance using PSNR, MSE, and SSIM.
• Lay the foundation for hybrid wavelet-deep learning approaches.
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Related Works

Table: A few most recent & relevant state-of-the-art methods

Previous Work Authors Method Year
Image denoising for magnetic

resonance imaging medical images
using improved generalized
cross-validation based on

the diffusivity function

S. Kollem, K. Ramalinga
Reddy, D. Srinivasa Rao,

C. Rajendra Prasad, V. Malathy,
J. Ajayan, and
D. Muchahary,

Quaternion Wavelet
Transformation,

Partial Differential
Equation

2022

Efficient denoising of
multi-modal medical image
using wavelet transform and
singular value decomposition

R. Patil and S. Bhosale
Wavelet Transform

(WT), Singular Value
Decomposition(SVD)

2023

A study of adaptive
fractional-order total
variational medical
image denoising

Y. Zhang, T. Liu,
F. Yang, and Q. Yang,

Mathematical
(Total Variation

Denoising)
2022

Efficient deep-learning-based
autoencoder denoising approach

for medical image diagnosis

W. El-Shafai, S. A. El-Nabi,
E.-S. M. El-Rabaie,

A. M. Ali, N. F. Soliman, A. D.
Algarni, and F. E. A. El-Samie

Deep Learning
Autoencoder 2022

Medical image denoising
using convolutional

denoising autoencoders
L. Gondara Deep Learning

Autoencoder 2016
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Research Questions

• Which wavelet type and thresholding method achieve the best denoising
performance?

• What decomposition level offers an optimal balance between noise
reduction and detail preservation?

• How do different thresholding techniques impact image quality?
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Proposed Methodology

Figure: A detailed system flowchart
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Experimental setup

Noisy Image:
• µ = 0, σ = 10,15,25

Denoised Image:
• Decomposition upto level 5
• Wavelet used: db3, bior6.8, and sym4
• Optimal threshold (τbayes) and (τuniversal ) was estimated using the Bayes

and Universal method
• Thresholding method: hard and soft
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Experiments

Table: Noise settings used in the experiments

Exp.
no

Noise Setup
Noise standard

deviation (σ) MSE SSIM PSNR

1 10 761.108 0.5 19.316
2 10 725.131 0.493 19.527
3 15 1148.059 0.385 17.531
4 15 1492.804 0.373 16.391
5 25 2513.741 0.252 14.128
6 25 2901.145 0.259 13.505

Table: Optimal denoising configurations and observed metrics

Exp.
no

Optimal Denoising Configuration with Observed Metrics
Decomposition

level Wavelet Thresholding
value

Thresholding
method MSE SSIM PSNR

1 2 sym4 τbayes hard, soft 105.297 0.782 27.907
2 4 db3 τuniversal soft 78.128 0.784 29.203
3 2 sym4 τbayes hard, soft 198.016 0.711 25.164
4 3 db3 τuniversal hard 108.145 0.74 27.791
5 2 sym4 τbayes hard, soft 487.683 0.597 21.249
6 4 db3 τuniversal soft 196.635 0.656 25.194
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Figure: MSE Figure: PSNR Figure: SSIM

11 / 18



Introduction

Research
Objectives

Related Works

Research
Questions

Proposed
Methodology

Outcome

Result
Discussion

Conclusion

Future Work

Experiments (Cont.)

Figure: Exp. no 1

Figure: Exp. no 3

Figure: Exp. no 5

Figure: Exp. no 2

Figure: Exp. no 4

Figure: Exp. no 6
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Result Discussion

• The sym4 wavelet seems to work well with τbayes

• The db3 wavelet seems to work well with τuniversal

Best performed combination: db3 with τuniversal

σ PSNR(dB)
10 29.203
15 27.791
25 25.194
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Conclusion

• Deterministic approach
• Fast compared to the deep learning based methods
• Doesn’t require training data
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Future Work

• Comparison with state-of-the-art methods
• Integrating wavelet-based methods with deep learning
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