Mitigating Noise from Biomedical Images Using Wavelet Transform Techniques

Asadullah Bin Rahman¹ Masud Ibn Afjal² Md. Abdulla Al Mamun³

^{1,2,3}Department of Computer Science and Engineering Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh

2025 International Conference on Electrical, Computer and Communication Engineering (ECCE), CUET, Bangladesh Feb 13, 2025

Table of Contents

- Introduction
- Research Objectives
- Related Works
- Research Questions
- Methodolo
- Outcome
- Result Discussion
- Conclusion

- 1 Introduction
- 2 Research Objectives
- 3 Related Works
- 4 Research Questions
- 6 Proposed Methodology
- 6 Outcome
- Result Discussion
- 8 Conclusion
- 9 Future Work

Introduction

Introduction

Research Objectives

Related Works

Research

Proposed Methodolog

Outcome

Result Discussion

Conclusion

Future Work

Biomedical Images:

- MRI
- CT Scan
- X-ray, etc

Noise in Images:

- Thermal noise from the patient's body
- Electronic Components
- Interference from outside environment

Introduction (Cont.)

Introduction

Research Objectives

Related Works

Questions

Proposed Methodolog

Outcome

Result Discussio

Conclusion

Future Wo

Effects of Noise:

- May lead to incorrect Region of Interst (ROI)
- Trouble to human eyes, difficult for doctors and radiologists for proper diagnosis
- Difficulty in machine learning

Problem Statement:

Medical images are often corrupted by noise during acquisition and processing. Traditional denoising methods struggle with complex noise patterns, leading to loss of important details. This study aims to optimize wavelet-based denoising to enhance image clarity.

Research Objectives

Introduction

Research Objectives

Related Works

Research Questions

Proposed

0.4.....

Result

Conclusion

- Identify the optimal wavelet and thresholding method for MRI denoising.
- Evaluate denoising performance using PSNR, MSE, and SSIM.
- Lay the foundation for hybrid wavelet-deep learning approaches.

Related Works

Table: A few most recent & relevant state-of-the-art methods

iiiti oddotioi

Research Objectives

Related Works

Research Questions

Proposed

. .

Result

Canalusian

Previous Work	Authors	Method	Year
Image denoising for magnetic resonance imaging medical images using improved generalized cross-validation based on the diffusivity function	S. Kollem, K. Ramalinga Reddy, D. Srinivasa Rao, C. Rajendra Prasad, V. Malathy, J. Ajayan, and D. Muchahary,	Quaternion Wavelet Transformation, Partial Differential Equation	2022
Efficient denoising of multi-modal medical image using wavelet transform and singular value decomposition	R. Patil and S. Bhosale	Wavelet Transform (WT), Singular Value Decomposition(SVD)	2023
A study of adaptive fractional-order total variational medical image denoising	Y. Zhang, T. Liu, F. Yang, and Q. Yang,	Mathematical (Total Variation Denoising)	2022
Efficient deep-learning-based autoencoder denoising approach for medical image diagnosis	W. El-Shafai, S. A. El-Nabi, ES. M. El-Rabaie, A. M. Ali, N. F. Soliman, A. D. Algarni, and F. E. A. El-Samie	Deep Learning Autoencoder	2022
Medical image denoising using convolutional denoising autoencoders	L. Gondara	Deep Learning Autoencoder	2016

Research Questions

Introduction

Research

Related Works

Research Questions

Questions

....

Pocult

Discussion

Conclusion

- Which wavelet type and thresholding method achieve the best denoising performance?
- What decomposition level offers an optimal balance between noise reduction and detail preservation?
- How do different thresholding techniques impact image quality?

Proposed Methodology

Introduction

Research

Related Works

Research

Proposed Methodology

Outcome

Result Discussion

Conclusion

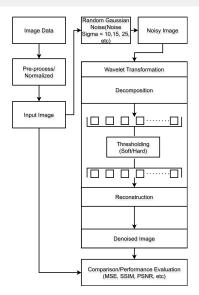


Figure: A detailed system flowchart

Experimental setup

Introduction

Research Objectives

Related Works

Research

Proposed Methodology

Outcome

Result Discussio

Conclusion

Future Wo

Noisy Image:

• $\mu = 0, \sigma = 10, 15, 25$

Denoised Image:

- Decomposition upto level 5
- Wavelet used: db3, bior6.8, and sym4
- Optimal threshold (τ_{bayes}) and ($\tau_{universal}$) was estimated using the Bayes and Universal method
- Thresholding method: hard and soft

Experiments

Table: Noise settings used in the experiments

Exp.	Noise Setup			
no	Noise standard deviation (σ)	MSE	SSIM	PSNR
1	10	761.108	0.5	19.316
2	10	725.131	0.493	19.527
3	15	1148.059	0.385	17.531
4	15	1492.804	0.373	16.391
5	25	2513.741	0.252	14.128
6	25	2901.145	0.259	13.505

Table: Optimal denoising configurations and observed metrics

Г	Ехр.	Optimal Denoising Configuration with Observed Metrics						
	no	Decomposition level	Wavelet	Thresholding value	Thresholding method	MSE	SSIM	PSNR
	1	2	sym4	$ au_{bayes}$	hard, soft	105.297	0.782	27.907
Г	2	4	db3	Tuniversal	soft	78.128	0.784	29.203
	3	2	sym4	$ au_{ extit{bayes}}$	hard, soft	198.016	0.711	25.164
	4	3	db3	Tuniversal	hard	108.145	0.74	27.791
	5	2	sym4	$ au_{ extit{bayes}}$	hard, soft	487.683	0.597	21.249
	6	4	db3	Tuniversal	soft	196.635	0.656	25.194

Introduction

Research

Related Works

Questions

Proposed Methodolog

Outcome

Discussion

Conclusion

Experiments (Cont.)

Introduction

Research Objectives

Related Works

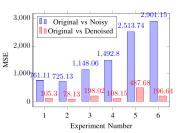
Durant

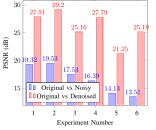
Methodolo

Outcome

Discussion

Conclusion





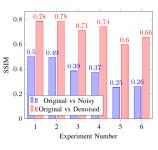


Figure: MSE

Figure: PSNR

Figure: SSIM

Experiments (Cont.)

Research

Related Works

Research

Questions

Outcome

Result

Conclusion

Figure: Exp. no 1

Figure: Exp. no 3

Figure: Exp. no 5

Figure: Exp. no 2

Figure: Exp. no 4

Figure: Exp. no 6

Result Discussion

Introduction

Research Objectives

Related Works

Research Questions

Questions

Outcome

Result Discussion

Conclusion

Future Work

ullet The sym4 wavelet seems to work well with $au_{\it bayes}$

• The db3 wavelet seems to work well with $\tau_{universal}$

Best performed combination: db3 with $\tau_{universal}$

σ	PSNR(dB)	
10	29.203	
15	27.791	
25	25.194	

Conclusion

Introduction

Research Objectives

Related Works

Research Questions

Proposed

0.40000

Result

Conclusion

- Deterministic approach
- Fast compared to the deep learning based methods
- Doesn't require training data

Future Work

Introduction

Research Objectives

Related Works

Research

Proposed

0......

Result

Discussion

- Comparison with state-of-the-art methods
- Integrating wavelet-based methods with deep learning

References

Research

Related Works

Research Questions

Result

Conclusion

Future Wo

- [1] J. Cheng, "Brain Tumor Dataset," Apr. 2017.
- [2] S. Kollem, K. Ramalinga Reddy, D. Srinivasa Rao, C. Rajendra Prasad, V. Malathy, J. Ajayan, and D. Muchahary, "Image denoising for magnetic resonance imaging medical images using improved generalized cross-validation based on the diffusivity function," *International Journal of Imaging Systems and Technology*, vol. 32, no. 4, pp. 1263–1285, 2022.
- [3] R. Patil and S. Bhosale, "Efficient denoising of multi-modal medical image using wavelet transform and singular value decomposition," in 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), pp. 1–6, 2023.
- [4] Y. Zhang, T. Liu, F. Yang, and Q. Yang, "A study of adaptive fractional-order total variational medical image denoising," *Fractal and Fractional*, vol. 6, no. 9, 2022.
- [5] W. El-Shafai, S. A. El-Nabi, E.-S. M. El-Rabaie, A. M. Ali, N. F. Soliman, A. D. Algarni, and F. E. A. El-Samie, "Efficient deep-learning-based autoencoder denoising approach for medical image diagnosis," *Computers, Materials & Continua*, vol. 70, no. 3, pp. 6107–6125, 2022.
- [6] L. Gondara, "Medical image denoising using convolutional denoising autoencoders," in 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246, 2016.

Acknowledgment

Introduction

Research Objectives

Related Work

Research

Questions

_

Outcome

Result Discussion

Conclusion

Future Worl

We acknowledge the support of IoThink Lab and IRT, HSTU.

QnA

Introduction

Research Objectives

Related Works

Research Questions

Proposed Methodolog

Outcome

Result Discussion

Conclusion

-uture Work

Thank You!