Enhanced Brain Tumor Classification from MRI Images Using Deep Learning Model

Asadullah Bin Rahman¹, Md. Touhid Islam², Md. Rashedul Islam³, Md. Sohrawordi⁴, Md. Nahid Sultan⁵

1.2.3.4.5 Department of Computer Science and Engineering Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh

26th International Conference on Computer and Information Technology (ICCIT), Cox's Bazar, Bangladesh
Dec 15, 2023

Table of Contents

Introduction

Related Works

Research Questions

Research Objectives

Proposed Methodology

Result Analysi

Conclusion

Cutura Mari

- 1 Introduction
- 2 Related Works
- 3 Research Questions
- 4 Research Objectives
- 6 Proposed Methodology
- 6 Result Analysis
- Conclusion
- 8 Future Work

Introduction

Introduction

Related Works

Research Questions

Research Objectives

Proposed Methodology

Result Analysi

Conclusion

-uture Work

DICOM Image

- De-facto standard for medical imaging. e.g. CT scan, Radiography, Ultrasonography, MRI, etc
- Water molecules of a patient's body release energy that is captured by the machine
- A 3D imagery is generated from where a slice of the clear abnormalities is taken
- DICOM is not just a file format. Rather it is a complete package of data transfer, storage, and display protocol that provides all functionalities.

Figure: Brain MRI

Introduction (Cont.)

Introduction

Related Works

Research

Research Objectives

Proposed Methodology

Result Analys

Conclusion

Future Work

Issues of DICOM Image

- Uses 16-bit signed data to represent pixel intensities that ranges from -32,768 to 32, 767
- Irregular pixel intensities

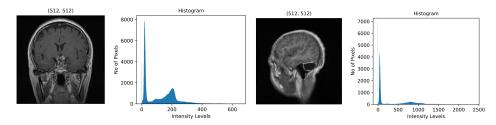


Figure: Inspection of MRI Image [1]

Ref. 1: J. Cheng, "brain tumor dataset",

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427, 4 2017.

Related Work-I

Brain tumor classification using convolutional neural network [2]

Introduction

Related Works

Question Research

Proposed Methodology

Result Analysis

Conclusion

Future Work

Contribution:

- Proposed pre-processing techniques such as Gaussian Filtering and Histogram Equalization
- Less complex CNN model with good performance

Limitation:

- Did not consider to map/scale pixel intensities
- Not efficient compared to other state of the art methods

Ref. 2: S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, "Brain tumor classification using convolutional neural network," in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–5, 2019.

Related Work-II

An efficient method to classify brain tumor using cnn and svm [3]

Introduction

Related Works

Question

Objectives
Proposed

Result Analysis

Conclusion

Contribution:

- Combined CNN and SVM to create a Hybrid model
- Compared the CNN and the Hybrid model

Limitation:

- Did not apply any kinds of pre-processing
- Complex model

Ref. 3: Z. A. Sejuti and M. S. Islam, "An efficient method to classify brain tumor using cnn and svm," in 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 644–648, 2021.

Related Work-III

Introduction

Related Works

Questions Research

Objectives

Result Analysis

Conclusion

Future Work

Brain tumor classification for mr images using transfer learning and fine-tuning [4]

Contribution:

- Normalized pixel intensities using Min-Max Normalization
- Block-wise fine tuning and Transfer Learning
- Good Performance

Limitation:

- Used VGG19, that is too complex and resource hungry
- Overfitting issues

Ref. 4: Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, and J. Lu, "Brain tumor classification for mr images using transfer learning and fine-tuning," Computerized Medical Imaging and Graphics, vol. 75, pp. 34–46, 2019.

Related Work-IV

Brain tumor detection using convolutional neural network [5]

Related Works

Contribution:

- Proposed methodology on Binary classification BRATS Dataset
- Performed classification using traditional algorithms from statistical features and CNN

Limitation:

- Did not apply pre-processing for CNN
- Too simple CNN model, not reliable

Ref. 5: T. Hossain, F. S. Shishir, M. Ashraf, M. A. Al Nasim, and F. Muhammad Shah, "Brain tumor detection using convolutional neural network," in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–6, 2019.

Research Questions

Introduction

Related Work

Research Questions

Research Objectives

Proposed

Result Analys

Conclusion

- How to deal with DICOM image?
- Does our deep learning model perform better compared to other state of the art methods?
- Is the proposed method good?

Research Objectives

Introduction

Related Work

Research

Research Objectives

Proposed

_

Conclusion

- Biomedical Image Processing
- Building an efficient Convolutional Neural Network Model
- Improved Classification Accuracy
- Lower Computational Cost and Higher Performance

Flow Diagram

Introduction

Polatod Works

Research Questions

Research Objectives

Proposed Methodology

Result Analysis

Conclusion

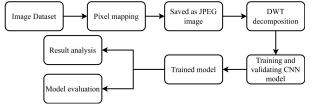


Figure: Proposed methodology for classification using CNN

Reading Dataset

Introduction

Related Works

Question

Objectives Proposed

Methodology

Conclusion

Result Analysi

- 3,064 T1-weighted CE-MRI images [1] from 233 patients
- 3 kinds of brain tumor: Meningioma (708 slices), Glioma (1426 slices), and Pituitary tumor (930 slices)
- Stored in Matlab file format(.mat) where image pixel data denotes the DICOM image

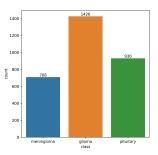


Figure: No. of Samples and Types

Ref. 1: J. Cheng, "brain tumor dataset",

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427, 4 2017.

Proposed

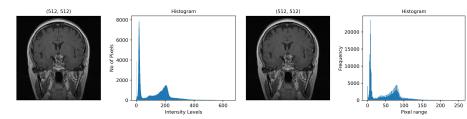
Methodology

Result Analysis

Pre-processing-I

Pixel Scaling

 $scaled_img = \frac{img - \min(img)}{\max(img) - \min(img)} \times 255$



(a) Before Scaling (512 \times 512)

(b) After Scaling (512 \times 512)

Figure: Pixel Scaling

Pre-processing-II

Introduction

Related Works

Researc

Research Objective

Proposed Methodology

Result Analys

Conclusion

Future Work

2-level Discrete Wavelet Transformation

- Configuration: haar wavelet, periodization mode
- Input Image → cA₁ (approximation coefficient 1), cH₁ (horizontal detailed coefficient 1), cV₁ (vertical detailed coefficient 1), and cD₁ (diagonal detailed coefficient 1)
- $cA_1 \rightarrow cA_2$, cH_2 , cV_2 , cD_2

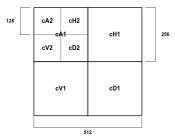


Figure: Image Decomposition using DWT

Model Architecture

Introduction

Related Works

Research Questions

Research Objectives

Proposed Methodology

Result Analysis

Conclusion

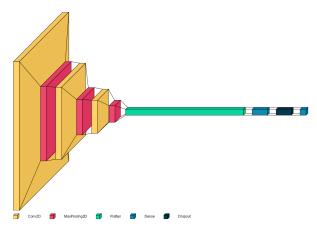


Figure: CNN Model

Model Architecture (Cont.)

Introduction

Related Works

Questions

Objectives

Proposed Methodology

Result Analysis

Conclusion

ruture vvork

Table: Model Summary

Layers	Output	Parameters		
Conv1	(None, 126, 126, 32)	320		
Max_Pool_1	(None, 63, 63, 32)	0		
Conv2	(None, 61, 61, 32)	9248		
Max_Pool_2	(None, 30, 30, 32)	0		
Conv3	(None, 28, 28, 64)	18496		
Max_Pool_3	(None, 14, 14, 64)	0		
flatten	(None, 12544)	0		
fc1	(None, 512)	6423040		
dropout	(None, 512)	0		
fc2	(None, 3)	1539		
Total trainable parameters: 6,452,643, Non-trainable parameters: 0				

Hyperparameters

Introduction

Related Works

Question

Objectives

Proposed Methodology

Result Analysis

Conclusio

Future Work

Table: Parameters used in the proposed method

Image Augmentation Parameters	i. Rescale	1./255	
	ii. Fill mode	nearest	
	iii. Shear range	0.2	
	iv. Zoom range	0.2	
	v. Horizontal flip	True	
Model Parameters	i. Epoch	100	
		Factor 0.8	
		Patience 5	
	ii. ReduceLROnPlateau	Cooldown 1	
		Min Ir 1.00E-04	
		Monitor val_loss	

System Algorithm

Introduction

Related Works

Research Questions

Research Objectives

Proposed Methodology

Darrik Arralı

Conclusion

Future Work

Algorithm Overall Proposed Methodology

- 1: Start
- 2: Import Image Dataset
- 3: Pre-process the input data:
 - i. Pixel mapping and storing in the local drive.
 - ii. Achieve ideal dimension of 128x128 using 2D DWT
- 4: Pass the pre-processed data to the CNN
- 5: Extract features using CNN
- 6: Perform classification using Neural Network
- 7: End

Experiments

Introduction

Related Work

Research

Research

Proposed Methodolog

Result Analysis

Conclusion

Future Work

Table: Experiment 1

	Metrics Accuracy(%)			
Method				
	OA	AA	Kappa	
Pixel saturation \rightarrow Gaussian				
filtering→Histogram Equalization +	91.85	90.6	85.68	
CNN [2]				
Exp1: Pixel mapping → Gaussian				
filtering \rightarrow Histogram Equalization +	94	93.32	90.66	
CNN				

Ref. 2: S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, "Brain tumor classification using convolutional neural network," in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–5, 2019.

Experiments (Cont.)

ntroduction

Related Works

Research Questions

Research Objectives

Proposed Methodology

Result Analysis

Conclusion

Table: Experiment 2

Method	Metrics Accuracy(%)			
	OA	AA	Kappa	
Exp2: Pixel mapping + Proposed CNN	96.13	96.08	93.92	
Proposed: Pixel mapping→2D DWT + CNN	96.9	96.55	95.16	

Performance Comparison

Table: Performance Comparison with Existing Methods

IIIIIOddGlioII

Related Works

Research

Research

Proposed Methodology

Result Analysis

Conclusio

	Metrics			Class				
Method	Accuracy(%)		Others	Meningioma	Glioma	Pituitary		
	OA	AA	Kappa	Others	Weilingionia	Giloilla	Fituitary	
Pixel saturation → Gaussian filtering→	91.85	90.6	85.68	Sensitivity	0.94	0.84	0.98	
Histogram Equalization + CNN [2]				Precision	0.79	0.96	0.95	
Histogram Equalization + Civiv [2]				Specificity	0.97	0.88	0.99	
		90.23 88.83	84.53	Sensitivity	0.76	0.91	0.99	
CNN-1 [3]	90.23			Precision	0.8	0.9	0.97	
				Specificity	0.934	0.917	0.995	
		90.92	88.59	Sensitivity	0.78	0.96	0.99	
CNN + SVM [3]	92.83			Precision	0.88	0.93	0.96	
				Specificity	0.939	0.96	0.995	
	94.29 9			Sensitivity	0.9	0.96	0.95	
VGG19 + Fine Tuning [4]		93.84	91.09	Precision	0.88	0.95	1	
				Specificity	0.967	0.962	0.981	
		90.38 88.33	88.33 84.76	Sensitivity	0.7	0.96	0.99	
CNN-2 [5]	90.38			Precision	0.9	0.87	0.96	
				Specificity	0.905	0.966	0.995	
Experiment 1:	94	93.32	90.66	Sensitivity	0.86	0.96	0.98	
Pixel Mapping → Gaussian filtering →				Precision	0.91	0.92	0.99	
Histogram Equalization + CNN				Specificity	0.955	0.962	0.991	
Experiment 2:	96.13	96.08	93.92	Sensitivity	0.95	0.96	0.97	
Pixel Mapping + Proposed CNN				Precision	0.9	0.97	1	
rixei iviappilig + Proposed Civin				Specificity	0.984	0.964	0.988	
Proposed:		96.55			Sensitivity	0.93	0.98	0.99
Pixel Mapping → 2D DWT	96.9		95.16	Precision	0.95	0.96	1	
+ CNN				Specificity	0.976	0.981	0.995	

Graphs

Introduction

Related Works

Research Questions

Objectives

Methodology

Result Analysis

Conclusion

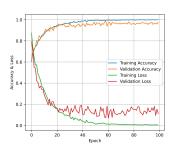


Figure: Training-Validation Accuracy and Loss Curve

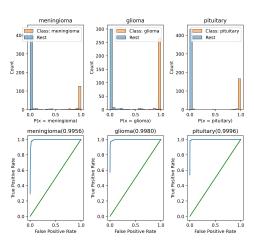


Figure: ROC-AUC OVR

Conclusion

Introduction

Related Work

Research Questions

Objectives

Decult Analysi

Result Analysis

Conclusion

- Practical and Efficient
- Optimized approach to extract features
- Better performance compared to other state of the art methods

Future Work

Introduction

Related Work

Research Questions

Proposed

Result Analysis

nesult Allalysis

Conclusion

- To make the model more simple
- More experiments on other datasets
- More analysis on different methods

References

Introduction

Related Works

Research

Research Objectives

Proposed Methodology

Result Analys

Conclusion

- [1] J. Cheng, "brain tumor dataset." https://figshare.com/articles/dataset/brain_tumor_dataset/1512427, 4 2017.
- [2] S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, "Brain tumor classification using convolutional neural network," in *2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)*, pp. 1–5, 2019.
- [3] Z. A. Sejuti and M. S. Islam, "An efficient method to classify brain tumor using cnn and svm," in 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 644–648, 2021.
- [4] Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, and J. Lu, "Brain tumor classification for mr images using transfer learning and fine-tuning," *Computerized Medical Imaging and Graphics*, vol. 75, pp. 34–46, 2019.
- [5] T. Hossain, F. S. Shishir, M. Ashraf, M. A. Al Nasim, and F. Muhammad Shah, "Brain tumor detection using convolutional neural network," in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–6, 2019.

QnA

Introduction

Related Works

Questions

Objectives

Proposed Methodology

Result Analysis

Conclusion

Thank You!